AUTHOR DECLARATION

بسم الله الرحمن الرحيم

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

Date: 11th April, 2014

Signature : ______________________________
Name : Asma Saleh W. Elmbrok
Matric No.: 4090090
Address : P13-B-13-10 Sri Lavender,
Jalan Sepakat Indah 2/2,
Kajang, Selangor, 43000,
Selangor
Asma Saleh W Elmabrok (FST4090090), bearer of Libyan Passport 996113, was born in Tobrk, Libya on September 27, 1977. She is currently residing at P13-B-13-10 Sri Lavender, Jalan Sepakat Indah 2/2, Kajang, Selangor, 43000, Selangor. She is the 3rd child of Mr. Saleh W. Elmabrok. Ms. Asma is happily married to Mr. Khaled Massod and they are blessed with two sons (Taim and Yazan) and one daughter (Aytin). She pursued her higher secondary school from Al-oroba School Higher Secondary School, Shahat, Libya. After school education, in 1996 she pursued her Bachelor of Biology Science from Omar Al-Mukhtar University, El beida, Libya. After completion of B.B.Sc., she started work in Primary School for 18 months. In June 2004, she continued her study for Master of Plant pathology in Omar Al-Mukhtar University, El beida, Libya under the supervision of Professor. Dr. Mahmood Hwitty. After completion she came to Malaysia to pursue her Doctor of Philosophy degree (Ph.D) programme in Microbiology. She joined the Faculty of Science and Technology in Universiti Sains Islam Malaysia (USIM), in the year 2009. She was supervised by Assoc. Professor. Dr. Zaiton Hassan and co-supervised by Assoc. Professor. Dr. Ahmed Mahir Mokhtar.
ACKNOWLEDGEMENTS

In the Name of Allah, Most Gracious, Most Merciful, all praise and thanks are due to Allah, and peace and blessings be upon His Messenger Mohamed s.a.w. I would like to express my most sincere appreciation to those who made this work possible: Advisory members, Friends and Family.

I would like to thank Associate Professor, Dr. Zaiton Hassan for providing me the opportunity to complete my PhD studies under her valuable guidance, for the many useful advice and discussions, for her constant encouragement and guidance, and for co-authoring and reviewing some of my publications, where her practical experience and technical knowledge made this research and those publications more interesting and relevant. In addition, special thanks are extended to the supervisory committee member; Associate Professor, Dr Ahmed Mahir Mokhtar. I am grateful for his willingness to serve on my supervisory committee, constant encouragement, helpful advice and many fruitful discussions.

Thanks and acknowledgements are meaningless if not extended to my parents who deserve my deepest appreciation. I am grateful for the countless sacrifices they made to ensure that I could pursue my dreams and for always being there for me. Real and deepest thanks to them (May ALLAH bless and protect them and may live long and healthy life). All praise and thanks words said to them will not be enough.

My thanks also go to my friends Mohammed Mustafa Aween, Mohammed Muftah, Ibrahim Elshaafi and Akaram Husain for their outstanding help and support. Last but not least, very special thanks to my husband Dr. Khaled M. A. Hussin, my children (Taim, Yazan and Aytin), my brothers, and sisters for their understanding, patience and support throughout the period of my study.
ABSTRAK

Pokok cili mudah diserang oleh kulat *Colletotrichum* mengakibatkan kerugian besar hasil pertanian ini. Penelitian ini menilai kemampuan bakteri asid laktik (LAB) sebagai kawalan bio terhadap kulat ini. Tiga ratus dua puluh empat LAB telah dipencilkan dari sumber yang berbeda di Malaysia dan diniali untuk aktiviti antikulat *C. capsici* dan *C. gloeosporioides*. Dua isolat LAB-C5 dan LAB-G7 menunjukkan aktiviti yang baik terhadap kedua kulat dan di kenalpasti dengan menggunakan API 50CHL dan 16S rDNA sebagai *L. plantarum* dan *L. pentosus* LAB-G, masing-masing. Bijibenih yang dirawat dengan sel LAB-C5 menunjukkan perbezaan ketara (P<0.05) pada peratus percambahan dan pertumbuhan plumule dan radikal yang baik berbanding dengan rawatan supernatan LAB-G7. Pengaruh rawatan sel LAB-C5 dan *C. capsici* ke atas pokok Chillibangi telah diniali. Semua pokok Chillibangi menunjukkan peningkatan berat kering bahagian atas pokok dan akar. Analisis biokimia menunjukkan peningkatan jumlah fenol yang ketara (P<0.05) dalam buah chili (2.71 mg/g) dibandingkan dengan kontrol (1.83 mg/g). Peningkatan aktiviti enzim peroksidase (PO=175.54 unit/aktiviti enzim) dan polyphenoloxidase (PPO=172.47 unit/aktiviti enzim) pada daun yang di inokulasi dengan sel LAB-C5 adalah lebih tinggi dan ketara (P<0.05) dari kontrol (PO=89.86 dan (PPO=97.27) Unit / enzim, masing-masing). Peningkatan kadar lignin (LC) dari akar adalah 0.799 mg/g berbanding dengan kontrol (0.329 mg/g). Sel LAB - C5 dan supernatan LAB - G7 adalah sesuai digunakan sebagai bio - control *in vitro* terhadap infeksi kulat pada buah chilli merah dan hijau yang didapati dari pasar, dan buah Cilibangi yang telah disimpan selama 45 h pada 28°C. Penelitian ini menunjukkan bahwa inokulasi LAB mampu menghasilkan daya ketahanan terhadap infeksi terhadap *C. capsici* dan *C. gloeosporioides* pada bijibenih, buah dan pokok chilli. Perubahan biokimia pada pokok chilli adalah faktor yang mempengaruhi ketahanan varieti chilli seperti yang ditunjukkan oleh rawatan dengan sel LAB-C5. Menggunakan *L. plantarum* LAB-C5 sebagai bio-control terhadap *C. capsici* pada tanaman chilli dapat mengurangkan penggunaan fungisida kimia di masa hadapan.
Chilli plants are easily attacked by fungi *Colletotrichum* resulting in great loss of this agricultural produce. This study evaluated the ability of lactic acid bacteria (LAB) as possible bio-control against fungi. Three hundred twenty four LABs were isolated from different sources in Malaysia and were evaluated for antifungal activity against *C. capsici* and *C. gloeosporioides*. The two isolates with good activity against both fungi were identified using API 50CHL and 16S rDNA as *Lactobacillus plantarum* LAB-C5 and *Lactobacillus pentosus* LAB-G7. Seeds treated with cell LAB-C5 showed significantly (P< 0.05) good germination percentage and growth of plumules and radicals compared to supernatant LAB-G7. The effect of chilli plants with LAB-C5 cells and *C. capsici* was evaluated. All chilli varieties showed increase in shoot and root dry weight with improved plant vigor. The biochemical analysis showed an increase in the total phenol compounds in fruits (with mean 2.71mg/g than control 1.83 mg/g). Increase in activity of enzymes peroxidase (PO) and polyphenoloxidase (PPO) in leaves was noted in plants treated with LAB-C5 cell. The PO was 175.54 and PPO was 172.47 unit /enzyme of plant tissue, higher than control with PO of 89.86 and PPO of 97.27 unit/enzyme. An increase in lignin content (LC) of roots was 0.799 mg/g compared with control (0.329 mg/g). The cells LAB-C5 and supernatants LAB-G7 were effective as bio-control *in vitro* against fungal infection on red and green chilli obtained from markets and Cilibangi fruits during storage for 45 days at 28°C. Inoculation of LAB was able to generate resistance to fungal infection against both fungi in seeds, fruits and plants. Changes in biochemical compounds in chilli plants are factors that may contribute to the development of resistance in chilli varieties as shown by plants treated with LAB-C5 cell. The potential of using *L. plantarum* LAB-C5 as bio-control against *C. capsici* in chilli plants is possible and may reduce the use of chemical fungicides in the future.
الملخص
ثمار و نباتات الفلفل تكون سهلة الاصابة بواسطة فطر المسبب لمرض الانثراكنوز وهذا يؤدي إلى الخسارة العظيمة في الانتاج الزراعي. لذلك تحتاج لطرق متطورة للسيطرة على المرض ومنع نمو الفطر. هذه الدراسة تقييم قدرة بكتيريا الحمض اللبنى كمكافحة حيوية ضد الفطرين حيث في هذه الدراسة 24 عزلة من مصادر مختلفة في ماليزيا كانت مجموعة كمشروع معادي ضد فطر الإنثراكنوز. نبات من عزلات بكتيريا الحمض اللبنى شهدت ذات نشاط معادي جيد ضد فطري الإنثراكنوز تم تعريفها بطريقة دليل التحليل الطيفي Lactobacillus ونسل الAPI 50CHL وعندما كانت العزلة L. pentosus G7 والعزلة plantarum C5 الفلفل عواملت مع خلايا بكتيريا (C5) كانت نتائج المعالمة بهذه البكتيريا ذات فروق معنوي عالية (P>0.05) في زيادة اقتصاد المجموع الخضري والجذري في كل أنواع الفلفل المختبرة مقارنة ببذور الفلفل C. glosoporioides وC. capsici مع عزلة معزولة بكتيريا الحمض البنين (C5) مع الفطر C. capsici. تأثير التربة المنخفضة بكتيريا الحمض البنين (G7) مع فطر C. capsici مع عزلة G7 خلايا البكتيريا C5 وانزيمات البكتيريا G7 ان امكانية استعمال هذه البكتيريا المختارة كمقاومة حيوية ضد فطر الانثراكنوز في نباتات الفلفل محتملة وقد يخفض من استعمال مبيدات الفطر الكيميائية في المستقبل كما حسبت وطورت نمو ومقاومة النباتات لمرض الانتراكنوز.
CONTENTS

AUTHOR DECLARATION i
BIODATA OF AUTHOR ii
ACKNOWLEDGEMENTS iii
ABSTRAK iv
ABSTRACT v
MULAKHKHAS AL-BAHTH vi
CONTENT PAGE vii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF APPENDICES xvi
ABBREVIATION xviii

CHAPTER I: INTRODUCTION 1

CHAPTER II: LITERATURE REVIEW 6
2.1 Lactic Acid Bacteria 6
 2.1.1 Lactic Acid Bacteria Are Able to Control Fungi Growth 7
 2.1.2 Factors That Influence the Antifungal Activity of Lactic Acid Bacteria 8
 2.1.3 Antifungal Metabolites Produced by Lactic Acid Bacteria 10
 2.1.4 Lactic Acid Bacteria-Mycotoxin Interactions 14
 2.1.5 Inhibition of Mycotoxin Biosynthesis by Lactic Acid Bacteria 15
 2.1.6 Identification of Lactic Acid Bacteria 16
2.2 Fungi 16
 2.2.1 Colletotrichum capsici and Colletotrichum gloeosporioides 16
 2.2.2 Effect of Anthracnose Disease on Chilli 18
 2.2.3 Life Cycle of Colletotrichum 19
 2.2.4 Morphology 20
 2.2.5 Control of Anthracnose Disease on Peppers 23
2.3 Chilli 28
 2.3.1 History of Chilli 28
 2.4 Chemical Compounds Contributing to Plant Resistance 29
 2.4.1 Phenols Compounds 29
 2.4.2 Peroxidase and Polyphenol Oxidase 30
 2.4.3 Lignin Content 31

CHAPTER III: ISOLATION AND IDENTIFICATION OF LACTIC ACID BACTERIA WITH ANTIFUNGAL ACTIVITY AGAINST COLLETOTRICHUM SPECIES 32
3.1 Introduction 32
3.2 Materials and Methods 34
 3.2.1 Screening of Antifungal Activity of LAB Isolates 34
 3.2.2 Characterization of LAB Isolates 35
3.2.3 Fungal Preparation
3.2.4 Screening of LAB Isolates for Antifungal Activity by Overlay Method
3.2.5 Determination of Inhibitory Activity of LAB Supernatants on Mycelia Growth Using the Well Method
3.2.6 Effect of Heat Treatment of LAB Supernatant on Antifungal Activity
3.2.7 Effect of Enzymes on Antifungal Activity of LAB Supernatant
3.2.8 Identification of LAB Using the API 50 CHL Kit Assay
3.2.9 Genotypic Identification of LAB by 16S rDNA
3.2.10 Statistical Analyses

3.3 Results
3.3.1 Antifungal Activity of LAB Isolated from Different Sources
3.3.2 Characterization of LAB with Antifungal Activity
3.3.3 Screening of Antifungal Activity of LAB Using the Overlay Method
3.3.4 Inhibitory Activity on Mycelia Growth Using the Well Method
3.3.5 Effect of Heat Treatment on Antifungal Activity of LAB Supernatant
3.3.6 Effect of Enzymes on Antifungal Activity of LAB supernatant
3.3.7 Identification of LAB Using API 50 CHL Assay and 16S rDNA

3.4 Discussion

3.5 Conclusion

CHAPTER IV: EVALUATION OF LAB-C5 AND LAB-G7 CELLS AND THEIR SUPERNATANTS AS BIOLOGICAL CONTROL AGAINST COLLETOTRICHUM CAPSICI AND C. GLOEOSPORIOIDES ON CHILLI SEEDS

4.1 Introduction
4.2 Materials and Methods
4.2.1 Microbial Cultures
4.2.2 Seeds Treatments
4.2.3 Inoculation of Chilli Seeds with Microbial Cultures
4.2.4 Bio-Control Assay on Chilli Seeds
4.2.5 Statistical Analyses

4.3 Results
4.3.1 Percentage Seed Germination Percentage for LAB Cells and Supernatant with C. capsici and C. gloesporioeides.
4.3.2 Plumule Length of Germinating Seeds Treated with LAB-C5 Cell and LAB-G7S Supernatant with C. capsici and C. gloesporioeides
4.3.3 Radical Length of Germinating Seeds Treated with LAB-C5 Cell and LAB-G7S Supernatant with C. capsici and C. gloesporioeides
4.3.4 Seedling Vigour Index of Seeds Treated with LAB-C5 Cell and LAB-G7S Supernatant with
C. capsici and *C. gloeosporioidees*

4.4 Discussion

4.4.1 Seed Germination Percentage for LAB Cells and Supernatants with *C. capsici* and *C. gloeosporioidees*

4.4.2 Plumule Length of Germinating Seeds Treated with LAB-C5 Cells and LAB-G7S Supernatant with *C. capsici* and *C. gloeosporioidees*

4.4.3 Radical Length of Germinating Seeds Treated with LAB-C5 Cells and LAB-G7S Supernatant with *C. capsici* and *C. gloeosporioidees*

4.4.4 Seedling Vigour Index of Seeds Treated with LAB-C5 Cells and LAB-G7S Supernatant with *C. capsici* and *C. gloeosporioidees*

4.4.5 Effect of Fungal Infections on Seeds

4.4.6 Effect of LAB on germination of Infected *C. capsici* and *C. gloeosporioidees* Chilli Seed

4.5 Conclusion

CHAPTER V: LACTIC ACID BACTERIA AS BIOLOGICAL CONTROL AGAINST *C. CAPSICI* IN CHILLI PLANTS

5.1 Introduction

5.2 Materials and Methods
5.2.1 Soil Treatments
5.2.2 Microbial Cultures
5.2.3 Chilli Seedlings
5.2.4 Experimental Design
5.2.5 Evaluation of Disease Severity (DS)
5.2.6 Plant Dry Weight
5.2.7 Microbial Density of Soil Inoculated with LAB-C5 and *C. capsici*
5.2.8 Plant Height
5.2.9 Number of Fruits per Plant, Fruit Length and Fruit Diameter
5.2.10 Biochemical Study
5.2.11 Isolation and Identification *C. capsici* and LAB-C5 of Treated Chilli Plants

5.3 Results
5.3.1 Disease Severity of *C. capsici* Infected Plants
5.3.2 Plant Dry Weight
5.3.3 Microbial Density of Soil Inoculated with LAB-C5 and *C. capsici*
5.3.4 Plant Height
5.3.5 Number of Fruits per Plant
5.3.6 Fruit Length
5.3.7 Fruit Diameter
5.3.8 Biochemical Study
5.3.9 Isolation and Identification *C. capsici* and LAB-C5 of Treated Chilli Plants
CHAPTER VI: INHIBITORY EFFECT OF LAB-C5 AND LAB-G7 INOCULATION AGAINST GROWTH OF C. CAPSICI AND C. GLOEOSPORIOIDE IN CHILLI FRUITS

6.1 Introduction
6.2 Materials and Methods
 6.2.1 Microbial Cultures
 6.2.2 Fruits Treatments
 6.2.3 Disease Incidence of Infected Chilli Fruits Treated with LAB and Phytopathogen Fungi C. capsici and C. gloeosporioide During 5 Day Storage at 28±2°C
 6.2.4 Effect of LAB-C5 Cells or LAB-G7 Supernatant Treatments on Disease Incidence of Chilli Fruits During 45 Day Storage at 28±2°C
 6.2.5 Statistical Analysis
6.3 Results
 6.3.1 Disease Incidence of Infected Chilli Fruits Treated with LAB and Phytopathogens Fungi C. capsici and C. gloeosporioide During 5 Day Storage at 28±2°C
 6.3.2 Effect of Cells LAB-C5 or Supernatant LAB-G7 Treatments on Disease Incidence of Chilli Fruits During 45 Day Storage at 28±2°C
6.4 Discussion
6.5 Conclusion

CHAPTER VII: CONCLUSION
REFERENCES
APPENDICES
LIST OF PUBLICATIONS
<table>
<thead>
<tr>
<th>Tables</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables 2.1:</td>
<td>Reported Causal Agents of Chilli Anthracnose</td>
<td>18</td>
</tr>
<tr>
<td>Tables 3.1:</td>
<td>Distribution of LAB with Antifungal Activity Against C. capsici and C. gloeosporioides</td>
<td>39</td>
</tr>
<tr>
<td>Tables 3.2:</td>
<td>Characteristics of LAB with Antifungal Activity Isolated from Different Sources</td>
<td>40</td>
</tr>
<tr>
<td>Tables 3.3:</td>
<td>Antifungal Activity of LAB Isolates Against C. gloeosporioides and C. capsici after 48h Incubation at 30°C Determined by Dual Agar Overlay Method.</td>
<td>42</td>
</tr>
<tr>
<td>Tables 3.4:</td>
<td>Effect of LAB Supernatant on Growth of C. capsici</td>
<td>43</td>
</tr>
<tr>
<td>Tables 3.5:</td>
<td>Effect of LAB Supernatant on Growth of C. gloeosporioides</td>
<td>43</td>
</tr>
<tr>
<td>Tables 3.6:</td>
<td>Growth Percentage of Phytopathogen Fungi with LAB Supernatant after Heat Treatment at 90°C Measured in Microtiter Plate Incubated at 30°C for 72 h</td>
<td>44</td>
</tr>
<tr>
<td>Tables 3.7:</td>
<td>Growth Percentage of Phytopathogen Fungi with LAB Supernatant after Heat Treatment at 121°C Measured in Microtiter Plate Incubated at 30 °C For 72 h</td>
<td>45</td>
</tr>
<tr>
<td>Tables 3.8:</td>
<td>Growth Percentage of Phytopathogen Fungi with LAB Supernatant after Treatment with Proteinase K Measured in Microtiter Plate Incubated at 30°C For 72h</td>
<td>45</td>
</tr>
<tr>
<td>Tables 3.9:</td>
<td>Growth Percentage of Phytopathogen Fungi with LAB Supernatant after Treatment with Trypsin Measured in Microtiter Plate Incubated at 30°C for 72h</td>
<td>45</td>
</tr>
<tr>
<td>Tables 3.10:</td>
<td>Similarity of LAB Isolated from Malaysian Fermented Vegetables and Fruits as Determined by API 50CHL and 16S rDNA</td>
<td>46</td>
</tr>
<tr>
<td>Tables 4.1:</td>
<td>Germination Percentage for Infected Chilli Seeds with C. capsici and C. gloeosporioeides Treated with Selected LAB Cells and Supernatant</td>
<td>57</td>
</tr>
<tr>
<td>Tables 4.2:</td>
<td>Plumule Length for Chilli Seeds Treated with LAB and C. capsici and C. gloeosporioides</td>
<td>59</td>
</tr>
<tr>
<td>Tables 4.3:</td>
<td>Radical Length for Chilli Seeds Treated with LAB and C. capsici and C. gloeosporioides</td>
<td>60</td>
</tr>
</tbody>
</table>
Tables 4.4: Seedlings Vigor Index for Chilli Seeds Treated with LAB and C. capsici and C. gloesporioides 62

Tables 5.1: Percentage of Disease Severity of Anthracnose on Chilli Plants Treated with L. plantarum with C. capsici 79

Tables 5.2: Mean Shoot Dry Weight in The Three Varieties of Chilli Plants Treated with L. plantarum and C. capsici 80

Tables 5.3: Mean Root Dry Weight in The Three Varieties of Chilli Plants Treated with LAB-C5 and C. capsici 81

Tables 5.4: Total Count of C. capsici in Inoculated Soil with LAB-C5 81

Tables 5.5: Mean Plant Height in Three Varieties of Chilli Plants Treated with LAB-C5 and C. capsici 82

Tables 5.6: Mean Number of Fruits Per Plant for Three Varieties of Treated Chilli Plants with LAB-C5 and C. capsici 84

Tables 5.7: Mean Fruit Length for Three Varieties of Chilli Plants Treated with LAB-C5 and C. capsici 85

Tables 5.8: Mean Fruit Diameter for Three Varieties of Chilli Plants Treated with LAB-C5 and C. capsici 86

Tables 5.9: Mean TPC Concentration in Chilli Plants Treated with LAB-C5 and C. capsici 87

Tables 5.10: Mean PO Concentration in Chilli Plants Treated with LAB-C5 and C. capsici 88

Tables 5.11: Mean PPO Concentration in Chilli Plants Treated with LAB-C5 and C. capsici 88

Tables 5.12: Mean LC Concentration in Chilli Plants Treated with LAB-C5 and C. capsici 89

Tables 5.13: Organisms Isolated from Chilli Plants Treated by L. plantarum and Fungi C. capsici 90

Tables 6.1: Disease Incidence (%) of Chilli Fruits Treated with Different Concentration of LAB Cells with Phytopathogens Fungi C. capsici and C. gloesporioeides 108

Tables 6.2: Disease Incidence (%) of Chilli Fruits Treated with Different Concentration of LAB Supernatants with Phytopathogens Fungi C. capsici and C. gloesporioeides 108

Tables 6.3: Disease Incidence (%) on Market Chilli and Cilibangi of Red and Green Fruits Treated with LAB Against C. capsici And C.
gloesporioeides

<table>
<thead>
<tr>
<th>Tables 6.4:</th>
<th>Biocontrol Efficacy (%) on Market Chilli and Cilibangi of Red and Green Fruits Treated with LAB Against C. capsici and C. gloesporioeides</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables 6.5:</td>
<td>Lesion Diameter (cm) on Market Chilli and Cilibangi of Red and Green Fruits Treated with LAB Against C. capsici and C. gloesporioeides</td>
<td>116</td>
</tr>
<tr>
<td>Tables 6.6:</td>
<td>Disease Incidence (%) on Chilli Fruits from Market Treated by LAB with Distilled and Chlorinated Water at Different Times 15, 30 and 45</td>
<td>118</td>
</tr>
<tr>
<td>Tables 6.7:</td>
<td>Disease Incidence (%) on Chilli Fruits from Market Treated by LAB with Distilled and Chlorinated Water at Different Times 15, 30 and 45</td>
<td>118</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Anthracnose Symptoms on Various Plant and Organs</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>The DNA Bands of LABs on The 1 % Agarose Gel</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Culture of A: Colletotrichum capsici and B: C.gloeosporioides</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Chilli Seeds in Petri Plate</td>
<td>55</td>
</tr>
<tr>
<td>5.1</td>
<td>Acervuli Arranged in Concentric Rings on Leaves and Fruits of Cilibangi</td>
<td>78</td>
</tr>
<tr>
<td>5.2</td>
<td>Growth of Cilibangi Treated with LAB-C5 after One Month</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>Growth of Cilibangi1 Treated with LAB-C5 and C. capsici after Three Months.</td>
<td>83</td>
</tr>
<tr>
<td>5.4</td>
<td>Growth of Cilibangi Fruits Length Inoculated with LAB-C5 and C. capsici</td>
<td>85</td>
</tr>
<tr>
<td>5.5</td>
<td>Symptoms of C. capsici on Chilli Plants Fruits</td>
<td>90</td>
</tr>
<tr>
<td>5.6</td>
<td>Detection of LAB on Plates with Antifungal Activity Against Both Fungi</td>
<td>91</td>
</tr>
<tr>
<td>5.7</td>
<td>Detection of LAB-1 Isolated from Stem of Plants Inoculated with LAB + C. capsici by PCR</td>
<td>92</td>
</tr>
<tr>
<td>5.8</td>
<td>Detection of LAB-2 in Plants Steam Inoculated with LAB by PCR</td>
<td>92</td>
</tr>
<tr>
<td>6.1</td>
<td>Effects of LAB-C5 Cell Concentration on Reduction of Disease (Anthracnose) Incidence Caused by C. capsici</td>
<td>109</td>
</tr>
<tr>
<td>6.2</td>
<td>Effects of LAB-C5 Cell Concentration on Reduction of Disease (Anthracnose) Incidence Caused by C. gloeosporioides</td>
<td>109</td>
</tr>
<tr>
<td>6.3</td>
<td>Effects of LAB-C5S Supernatant Concentration on Reduction of Disease (Anthracnose) Incidence Caused by C. capsici</td>
<td>110</td>
</tr>
<tr>
<td>6.4</td>
<td>Effects of LAB-C5S Supernatant Concentration on Reduction of Disease (Anthracnose) Incidence Caused by C. gloeosporioides</td>
<td>110</td>
</tr>
<tr>
<td>6.5</td>
<td>Effects of LAB-G7 Cell Concentration on Reduction of Disease (Anthracnose) Incidence Caused by C. capsici</td>
<td>111</td>
</tr>
</tbody>
</table>
Figure 6.6: Effects of LAB-G7 Cell Concentration on Reduction of Disease (Anthracnose) Incidence Caused by *C. gloeosporioides* 111

Figure 6.7: Effects of LAB-G7S Supernatant Concentration on Reduction of Disease (Anthracnose) Incidence Caused by *C. capsici* 112

Figure 6.8: Effects of LAB-G7S Supernatant Concentration on Reduction of Disease (Anthracnose) Incidence Caused by *C. gloeosporioides* 112
LIST OF ABBREVIATIONS

API Analysis Profile Index
CaCO$_3$ Calcium carbonate
H Hour
H$_2$O$_2$ Hydrogen peroxide
LAB Lactic acid bacteria
µg Microgram
Mm Millimeter
MRS de Man Rogosa Sharpe
PDA Potato Dextrose agar
NA Nutrient agar
Nm Nanometer
OD Optical density
PCR polymerase chain reaction
Sp /spp. Species
NaCl Sodium chloride
CB Chilibangi Seeds
CP Chilli Padi Semerah Seeds
KU Chilli Kulai Seeds
MC11 Mardi chilli Seeds
LAB-G7 Cells of *Lactobacillus pentouces*
LAB-G7S Supernatant of *Lactobacillus pentouces*
LAB-C5 Cells of *Lactobacillus plantarum*
LAB-C5S Supernatant of *Lactobacillus plantarum*
C.c *Colletotrichum capsic*
C.g *Colletotrichum gloesporioides*
DW Distilled water
CL Chlorinated water
Cm Centimeters
mg Miligram
g Gram
U Unit
CB1
Cilibangi 1

CB2
Cilibangi 2

CB3
Cilibangi 3

TPC
Total Phenols Compounds

PO
Peroxidase

PPO
polyphenol oxydase

LC
Lignin content

Leu. Citreum
Leuconostoc citreum

Lact. Lactis
Lactococcus lactis

T. harzianum
Trichoderma harzianum

B. subtilis
Bacillus subtilis

G. roseum
Gliocladium roseum

S. noursei
Streptomyces noursei

P. guilliermondii
Pichia guilliermondii

P. commune
Penicillium commune

P. roqueforti
Penicillium roqueforti

A. fumigates
Aspergillus fumigates

C. albicans
Candida albicans

B. cinerea
Botrytis cinerea

A. solani
Alternaria solani

P. drechsleri
Phytophthora drechsleri

F. oxysporum
Fusarium oxysporum

M. laxa
Monilinia laxa

E. fibuliger
Endomyces fibuliger

X. campestris
Xanthomonas campestris

E. carotovora
Erwinia carotovora

M. phaseolina
Macrophomina phaseolina

E. faecium
Enterococcus faecium

A. alternate
Alternaria alternate

E. repens
Eurotium repens

E. rubrum
Eurotium rubrum

F. sporotrichioides
Fusarium sporotrichioides

V. dahlia
Verticillium dahlia
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendices</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendices A:</td>
<td>Isolation and Identification of Lactic Acid Bacteria with Antifungal Activity Against Colletotrichum Species</td>
<td>163</td>
</tr>
<tr>
<td>Appendices B:</td>
<td>Evaluation of LAB-C5 and LAB-G7 Cells and Their Supernatants as Biological Control Against C. capsici and C. gloeosporioides on Chilli Seeds</td>
<td>168</td>
</tr>
<tr>
<td>Appendices C:</td>
<td>Lactic Acid Bacteria as Biological Control Against C. capsici in Chilli Plants</td>
<td>183</td>
</tr>
<tr>
<td>Appendices D:</td>
<td>Inhibitory Effect of LAB-C5 and LAB-G7 Against Growth of Colletotrichum capsici and C. gloeosporioides in Chilli Fruits</td>
<td>208</td>
</tr>
</tbody>
</table>
REFERENCES

Yoon, J. B. 2003. Identification of genetic resources, interspecific hybridization and inheritance analysis for breeding pepper (*Capsicum annuum*) resistant to anthracnose, Seoul National University.

