Please use this identifier to cite or link to this item:
Title: Supercapacitor based on activated carbon and hybrid solid polymer electrolyte
Authors: M.A., Hashim
A.S.A., Khiar
Keywords: H 3PO 4; Polymer electrolyte
PVA; Supercapacitor
Issue Date: 2011
Abstract: The main objective of the present work is to develop a high conducting hybrid solid polymer electrolyte (HSPE) using polyvinyl alcohol as the host polymer and H 3PO 4 as the ionic dopant. Owing to its porous nature, the introduction of a Whatman filter paper helps to increase the electrical conductivity by acting as a support to the electrolyte system. This allows more H 3PO 4 acid to be loaded into the system and thus helps to improve the mechanical strength of the electrolytes. The highest conducting HSPE was obtained at 1•04×10 -4 S cm -1 for samples containing 70% loading of acid (P30H70-C). Such conductivity is sufficient for application in an electrical double layer capacitor (EDLC). The EDLC was fabricated using the hybrid electrolyte with its activated carbon electrodes soaked in H 3PO 4. A specific capacitance of 34 F g -1 with internal resistance of as low as 1 Ω cm -2 was obtained when the cell was charged-discharged at 10 mA. The working voltage for this EDLC is 1 V with efficiency ranging between 85 and 97%. © W. S. Maney & Son Ltd. 2011.
ISSN: 1432-8917
Appears in Collections:Materials Research Innovations

Files in This Item:
File Description SizeFormat 
Supercapacitor based on activated carbon and hybrid solid polymer electrolyte.pdf184.18 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.