IRON DEFICIENCY ANAEMIA
CURRENT CONCEPTS

Dr Noor Fadzilah bt. Zulkifli
Prof. Dr. Methil Kannan Kutty

USIM Publisher
Universiti Sains Islam Malaysia
Bandar Baru Nilai
Negeri Sembilan
2013
IRON DEFICIENCY ANAEMIA: CURRENT CONCEPTS

CONTENTS

LIST OF FIGURES viii
LIST OF APPENDICES ix
LIST OF ABBREVIATIONS ix
PREFACE xi

CHAPTER 1: INTRODUCTION 13

CHAPTER 2: EPIDEMIOLOGY 17
• Hypochromic microcytic anaemia 17
• Iron deficiency anaemia 17
• Iron deficiency anaemia in children and adolescence 19
• Iron deficiency anaemia in pregnancy 20

CHAPTER 3: DISTRIBUTION OF BODY IRON 21
• Functional iron containing protein 21
• Ferritin and hemosiderin 22
• Transferrin and transferrin receptor 22

CHAPTER 4: NUTRITIONAL AND METABOLIC ASPECT OF IRON 25
• Body iron distribution 25
• Iron transport and absorption 26
• Cellular iron homeostasis 28
• Normal iron balance 30

CHAPTER 5: IRON ABSORPTION 31
• Dietary and luminal factors 31
• Mucosal factors 32
• Hepcidin 32

CHAPTER 6: INTERNAL IRON EXCHANGE 35
• Iron uptake by erythroid cells 35
• Breakdown of haemoglobin iron 35
• Fate of iron in erythroid cells 36
• Sequence of events in iron deficiency 36
CHAPTER 7: CAUSES OF IRON DEFICIENCY
- Nutritional iron deficiency
- Blood loss
- Pregnancy
- Malabsorption
- Parasitic infestation
- Other rare causes

CHAPTER 8: DIFFERENTIAL DIAGNOSIS
- Haemoglobin disorders
- Anaemia of chronic diseases
- Anaemia of chronic diseases with co-existing iron deficiency
- Sideroblastic anaemia
- Vitamin A deficiency
- Pyridoxine deficiency

CHAPTER 9: DIAGNOSTIC INVESTIGATION FOR IRON DEFICIENCY
- Serum iron and Total Iron Binding Capacity (TIBC)
- Serum ferritin
- Serum transferin receptor (sTfR)
- Red cell protoporphyrin and zinc protoporphyrin
- Bone marrow iron
- Serum hepcidin
- Investigation of the cause of iron deficiency

CHAPTER 10: PATHOLOGICAL EFFECTS OF IRON DEFICIENCY IN ADULTS
- Fatigue
- Decreased physical performance
- Epithelial cell disorders
- Hair follicle and nail disorders
- Neurophysiological impairment
- Enzymatic process impairment
- Increased risk of infection
- Pica

CHAPTER 11: PATHOLOGICAL EFFECTS OF IRON DEFICIENCY IN PREGNANCY
- Regulation of iron transfer to fetus
- Abnormalities in implantation and growth of embryo
- Maternal iron deficiency anaemia and duration of gestation
- Maternal iron deficiency anaemia and birth weight 77
- Effects of anaemia on maternal mortality and morbidity 77
- Maternal iron deficiency anaemia and infant health 78
- Benefits of iron supplementation on maternal iron status 78
- Benefits of iron supplementation on iron status of the fetus and infant 80

CHAPTER 12: PATHOLOGICAL EFFECTS OF IRON DEFICIENCY IN INFANTS AND CHILDREN 81
- Iron deficiency anaemia and infant development 81
- Marginal iron deficiency anaemia and infant development 82
- Children and adolescents with iron deficiency 83
- Paediatric stroke 83
- Pseudomotor cerebri 84

CHAPTER 13: ALGORITHM IN THE APPROACH TO PATIENT WITH ANAEMIA 85
- Anaemia in adults 85
- Anaemia in children 90
- When should you refer a case of iron deficiency anaemia for haematologist care? 96

CHAPTER 14: MANAGEMENT OF IRON DEFICIENCY ANAEMIA 99
- Oral iron supplementation 99
- Parenteral iron therapy 100
- Recombinant human erythropoietin (rhEPO) 101
- Surgical management 101
- Improvement in dietary iron intake 102

CHAPTER 15: PREVENTION AND CONTROL OF IRON DEFICIENCY 103
- Food-based approach 103
- Iron supplementation 104

APPENDIX 1 105
APPENDIX 2 106
APPENDIX 3 107
REFERENCES 109
INDEX 133
List of Figures

<table>
<thead>
<tr>
<th>Figure 1</th>
<th>Molecular pathways of iron absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2</td>
<td>Coordinated regulation of expression of ferritin and transferrin receptor</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Incorporation of iron from plasma transferring into haemoglobin in developing red cells</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Blood film showing hypochromic and microcytic red cells with occasional target cells and pencil-shaped poikilocytes</td>
</tr>
<tr>
<td>Figure 5</td>
<td>The serum iron, unsaturated serum iron binding capacity (UIBC) and serum ferritin in normal subjects and in those with iron deficiency, anaemia of chronic disorders and iron overload</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Normal iron stores in bone marrow biopsy</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Absence of iron stores in bone marrow biopsy from a patient with iron deficiency anaemia</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Angular cheilosis and stomatitis</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Koilonychia</td>
</tr>
</tbody>
</table>
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>Kinetic approach in the management of patient with anaemia</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Morphological approach in the management of patient with anaemia</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Diagnostic approach in children with pallor</td>
</tr>
</tbody>
</table>

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-PGDH</td>
<td>6-Phosphogluconate dehydrogenase</td>
</tr>
<tr>
<td>ALAS2</td>
<td>ALA-synthetase 2</td>
</tr>
<tr>
<td>ABCB7</td>
<td>ATP-binding cassette subfamily B7 genes</td>
</tr>
<tr>
<td>Bmpr1a</td>
<td>Bone morphogenetic protein receptor type 1a</td>
</tr>
<tr>
<td>DMT1</td>
<td>Divalent metal iron transporter 1</td>
</tr>
<tr>
<td>DCytb</td>
<td>Duodenal cytochrome b</td>
</tr>
<tr>
<td>FTH1</td>
<td>Ferritin heavy polypeptide 1</td>
</tr>
<tr>
<td>FTL</td>
<td>Ferritin light polypeptide</td>
</tr>
<tr>
<td>G6PDH</td>
<td>Glucose-6-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GRLX5</td>
<td>Glutaredoxin 5</td>
</tr>
<tr>
<td>HCP1</td>
<td>Haem carrier protein 1</td>
</tr>
<tr>
<td>H&E</td>
<td>Haematoxylin and eosin</td>
</tr>
<tr>
<td>Hfe</td>
<td>Haemochromatosis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Hjv</td>
<td>Hemojuvelin</td>
</tr>
<tr>
<td>IF gamma</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>IL1</td>
<td>Interleukin 1</td>
</tr>
<tr>
<td>IL6</td>
<td>Interleukin 6</td>
</tr>
<tr>
<td>IRP1</td>
<td>Iron regulatory protein 1</td>
</tr>
<tr>
<td>IRP2</td>
<td>Iron regulatory protein 2</td>
</tr>
<tr>
<td>JAK/STAT</td>
<td>Janus kinase/signal transducer and activator of transcription</td>
</tr>
<tr>
<td>MCH</td>
<td>Mean corpuscular haemoglobin</td>
</tr>
<tr>
<td>MCHC</td>
<td>Mean corpuscular haemoglobin concentration</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean corpuscular volume</td>
</tr>
<tr>
<td>PCV</td>
<td>Packed cell volume</td>
</tr>
<tr>
<td>rhEPO</td>
<td>Recombinant human erythropoietin</td>
</tr>
<tr>
<td>RDW</td>
<td>Red cell distribution width</td>
</tr>
<tr>
<td>EP</td>
<td>Erythrocyte protoporphyrin</td>
</tr>
<tr>
<td>RARS</td>
<td>Refractory anaemia with ring sideroblast</td>
</tr>
<tr>
<td>IRE</td>
<td>Iron responsive elements</td>
</tr>
<tr>
<td>sTfR</td>
<td>Serum transferrin receptor</td>
</tr>
<tr>
<td>SI-LfR</td>
<td>Small intestine lactoferrin receptor</td>
</tr>
<tr>
<td>TIBC</td>
<td>Total iron binding capacity</td>
</tr>
<tr>
<td>TNF-alpha</td>
<td>Tumour necrosis factor alpha</td>
</tr>
<tr>
<td>UIBC</td>
<td>Unsaturated iron binding capacity</td>
</tr>
<tr>
<td>ZPP</td>
<td>Zinc protoporphyrin</td>
</tr>
</tbody>
</table>
With the advent of spectacular advances and recent break throughs in various facets of diseases including molecular aspects, genetics epigenomics immunology, and revolutionary changes in diagnostic armamentarium, we were prompted to review the global public health problem of iron deficiency anaemia. This millennium has witnessed amazing strides that have inundated medical literature by colossal breathtaking advances contributing to enhanced comprehension of molecular profiles and mechanisms of hematologic diseases. As Hematology is a discipline that alliances pathology, molecular genetics and medicine, we have endeavoured to incorporate a wide field in the interest of integration. Despite nay because of the accelerating pace of the advances in the cutting edge technology and molecular profile of diseases, in the opinion of the authors the subject of iron deficiency anaemia has not received the attention it truly deserves. In this context, we are primarily concerned with the welfare of the patients and their families and the main focus of our efforts is for successful therapeutic outcomes. As pathologists, we felt deeply committed to deliver useful information in its best light in any way possible. Hence, we have selected an excellent showcase which will hopefully pave the way for students and residents for continued studies of this very consuming global problem of iron deficiency anaemia. Much of what is embodied herein may demand rethinking in future as hematology analogous to Medicine is changing incessantly. We are deeply indebted to the numerous esteemed experts whose publications were freely consulted and quoted and needless to reiterate that this has infused in us enormous confidence in the preparation of this book. Our heartfelt thanks to Puan Adibah, Chief in charge of publications in USIM for her
unstinted cooperation in processing this publication. Any expression of special thanks to Associate Professor Rosline Hassan and Dr. Prashanta Kumar Das will be insufficient to convey our sincere gratitude for their remarkable and ungrudging help for sparing their precious time for reviewing this piece of work. Admittedly it is well nigh impossible for a book of this nature to be wholly free from human errors, and particularly typographical errors. Nevertheless we hope that readers will find it useful, interesting, illuminating and inspiring. We would also appreciate feedback from the readers for further enhancement of the book.
CHAPTER 1: Introduction

The impetus for presentation of this micro-review is to re-look at the common problem of iron deficiency anaemia with particular reference to current concepts of its pathogenesis, historical perspective and impact on health in human population. Hence this warrants a critical appraisal of the subject. It is appropriate therefore to look into its historical perspective in addition to clearly defining the concept of iron deficiency anaemia as a significant public health problem. It calls for an apt definition of iron deficiency anaemia as it is generally conceived today.

There has been a paradigm shift from the early terminology and concept of nutritional anaemia which was defined by World Health Organisation (WHO) in 1968. It was referred to as a condition in which the haemoglobin content of the blood is lower than normal as a result of deficiency of one or more essential nutrients regardless of the cause of the deficiency. WHO studies in determining the cause of anaemia concluded that iron deficiency which was present in 40% to 90% of pregnant women is the most common cause of nutritional anaemia. This particular shift in emphasis in the concept of iron deficiency was further confirmed by Baker and Demayer (1979). Nutritional anaemia assumed great significance as a large component of global anaemia prevalence and iron deficiency anaemia is now being considered as the most common cause of nutritional anaemia. World Health Organization (WHO) in 1989 stated clearly that iron deficiency is by far the commonest cause of nutritional anaemia; it may be associated with folate deficiency especially during pregnancy (WHO/UNICEF/ICCIDD, 2007).

According to the current definition, anaemia is a condition when the haemoglobin concentration is less than 13.0g/dl in males or less than 11.5g/dl in females (Walter, 1994). It obviously causes a decline
APPENDIX 1

Kinetic approach in the management of patient with anaemia

Anaemia

Reticulocytes count

Low

Reduced RBC production

- Nutritional deficiency (e.g., iron, B12, folate)
- aplastic anaemia
- pure red cell aplasia
- Myelodysplastic syndrome (MDS)
- bone marrow infiltration
- drugs

Raised

Blood loss

- Trauma
- malaena
- haematemesis
- menorrhagia
- peptic ulcer
- malignancy
- excessive blood donation
- hemodilysis

Increased RBC destruction

- hereditary spherocytosis
- thalassaemia
- haemoglobinopathies
- autoimmune haemolytic anaemia
- thrombotic thrombocytopenic purpura (TTP)
- haemolytic uraemic Syndrome (HUS)
- malaria
APPENDIX 2

Morphological approach in the management of patient with anaemia

- **Anaemia**
 - **MCV**
 - Low
 - Normal
 - Raised
 - **Reticulocyte**
 - Raised
 - Normal / low
 - Thalassaemia Major
 - other thalasaemia Syndromes eg; S-β thal, E-β thal
 - IDA
 - lead poisoning
 - thalassaemia trait
 - sideroblastic anaemia
 - ACD
 - enzyme disorders eg; G6PD def
 - immune disorders eg; AIHA
 - MAHA
 - infection induced hemolysis
 - megaloblastic anaemia ie; B12 & folate deficiency
 - MDS
 - LGL
 - alcoholic
 - liver disease
 - hypothyroidism
 - membrane disorders eg; HS, HE
 - haemoglobinopathies eg HbSS, HbSC
 - Congenital AA
 - Diamondblackfan, Fanconi's anaemia
 - Acquired AA
 - BM infiltration by malignancies
 - aplastic crisis with underlying hemolysis eg; HS, sickle cell disease
 - hypersplenism
 - ACD

MCV = Mean Cell Volume
ACD = Anaemia of Chronic Disease
G6PD = Glucose - 6 - Phosphate Dehydrogenase
AIHA = Autoimmune Hemolytic Anaemia
MAHA = Microangiopathic Hemolytic Anaemia
MSD = Myelodysplastic Syndrome
LGL = Large Granular Lymphocyte Leukaemia
HS = Hereditary Spherocytosis
HE = Hereditary Elliptocytosis
AA = Aplastic Anaemia
Appendix

Diagnostic approach to children with pallor

![Diagram]

- **Anaemia**
 - **Raised Reticulocyte count**
 - **MCV**
 - **Low**
 - Thalassaemia major
 - other thalassaemia syndrome eg; S-β thal, E-β thal
 - **Normal**
 - **Raised**
 - enzyme disorders eg; G6PD def
 - immune disorders eg; AIHA
 - MAHA
 - infection induced hemolysis
 - **Normal or Low Reticulocyte count**
 - **MCV**
 - **Low**
 - IDA
 - lead poisoning
 - thalassaemia trait
 - sideroblastic anaemia
 - ACD
 - **Normal**
 - **Raised**
 - megaloblastic anaemia eg; B12 and folate deficiency

- **MCV** = Mean Cell Volume
- **ACD** = Anaemia of Chronic Disease
- **G6PD** = Glucose - 6 - Phosphate Dehydrogenase
- **AIHA** = Autoimmune Hemolytic Anaemia
- **MAHA** = Microangiopathic Hemolytic Anaemia
- **HS** = Hereditary Spherocytosis
- **HE** = Hereditary Elliptocytosis
- **AA** = Aplastic Anaemia

107

Finch CA, Cook JD, Labbe RF, Culala M. Effect of blood donation on iron stores as evaluated by serum ferritin. Blood 1977; 50: 441-7

Golijian E. Pathology 2nd ed. Mosby Elsevier, rapid Review Series.

http://webercrawler.tripod.com/eg3t.htm
http://www.dmse.moph.go.th/webrOOt/ri/Npublic/p04.htm

Norlelawati AT, Siti hatijah M, Siti Nor Haiza H, Rusmawati I, Salman MS, Abdul wahab J, Naznin M. Screening for thalassaemia among group of students of a higher institution – our experience. The International Medical Journal Malaysia 2011; 10: 3-6.

Roodenburg AJC et al. Comparison between time dependent changes in iron metabolism of rats as induced by marginal deficiency of vitamin A or iron. Br J Nutr 1996; 71: 687

Rusia U; Gupta S; Agarwal N; Singh KC; Sikka M; Madan N. Efficacy of the new program of Iron Supplement in pregnancy in India. Indian Journal of Hematology and Blood Transfusion. 1999.

125

Saloojee H, Pettifor J. Iron deficiency and impaired child development: The relation may be causal, but it may not be a priority for intervention. BMJ 2001; 323: 1377–8.

Umesh K. Consultation on “Strategies for Prevention and Control of Iron Deficiency Anemia amongst Under Three Children in India”. Indian Pediatrics. 2002

Iron Deficiency Anaemia: Current Concepts

WHO. Thalassaemia and other haemoglobinopathies. 2006.

6-Phosphogluconate dehydrogenase (6PGDH) 67
adolescence 19, 30, 40-41, 62, 81
ALA-synthase 2 (ALAS2) 46, 55-56, 112
angular stomatitis 37, 69
aplastic anaemia 85, 88-89, 93, 95
arterio-venous malformation 41
ascorbic acid 27, 63
Ascris Lumbricoides 43
ATP-binding cassette subfamily B7 genes (ABC7) 56, 111
Bacteriostatic 22
Belgrade rats 27, 45
Berger’s disease 41
bone marrow 21, 25-26, 33, 37, 51-55, 58, 63-65, 85-86, 88-91, 93-94, 100, 119
bone morphogenetic protein receptor type 1A (Bmpr1a) 33
cognitive 18-19, 71, 81-83, 113, 115, 129
cytochromes 25
Dietary 18-20, 25, 27, 30-31, 33, 39-40, 42, 45, 49, 57, 66-67, 92, 95, 102-3, 119, 128
divalent metal ion transporter 1 (DMT1) 26-27, 32, 35, 45-46, 121
diverticulosis 40
duodenal cytochrome b (DCytb) 27, 32
dyserythropoietic 36
sideroblastic 36
E399D mutation 45
endocytosis 26, 35
Entamoeba histolytica 43
Epidemiology 115, 121, 124
Erythroid 26-28, 32-33, 35-36, 45, 52, 54-56, 58, 63-64, 87, 90, 93, 101, 112, 124
Fatigue 68, 79, 85, 93
ferric reductase 27
ferritin heavy polypeptide (FTH1) 55
ferritin light polypeptide (FTL) 55
ferroportin 1 27
ferrous oxidase 35
Folate 13, 26, 59, 85, 87-88, 93, 103, 131
FTMT gene 55
gastric atrophy 69
geophagia 73
gestation 20, 40, 75-76
Giardia duodenalis 43, 122
glossitis 37, 69
Glucose-6-phosphate dehydrogenase (G6PDH) 67, 94
Glutaredoxin 5 (GRLX5) 46
haem carrier protein 1 (HCP1) 26
haem oxygenase 32, 35
hemoglobinopathies 20, 117
Haemoglobin 13-15, 20-21, 31,
 35-36, 40, 42, 47-48, 50-51, 54,
 58-59, 62-64, 68, 72, 77, 82,
 85-87, 89-91, 94-95, 97, 99-100,
 112, 121, 130
haemolytic 36, 40, 86, 91, 94
HAMP gene 33
Hematoxylin and Eosin stain (H&E) 26
hemochromatosis (Hfe) 32-33, 61
hemojuvelin (Hjv) 33
Hemosiderin 22, 25-26, 65-66
hemosiderosis 41, 45
Hepcidin 22, 32-33, 35-36, 52-54,
 56, 66, 118, 130
hephaestin 27-28, 32, 112
hereditary spherocytosis 86, 92-93,
 95-96
HFE gene 33
homeostasis 28, 33, 56, 111
hookworms 39, 43, 124
hydrochloric acid 26
Hypochromic microcytic 17, 24, 39,
 45, 47, 49, 51, 53, 58-59, 87, 89,
 92, 94, 96, 100, 124
Implantation 76
Interferon gamma (IF gamma) 52
interleukin-1 (IL1) 52
interleukin-6 (IL6) 52
iron 13-15, 17-23, 25-33, 35-37, 39-
 42, 44-73, 75-87, 90, 92, 95-97,
 99-103, 110-132
Iron deficiency anaemia 13-15, 17-
 20, 30, 37, 39-47, 53-54, 64-67,
 69, 71-72, 76, 78, 81, 86, 96-97,
 100, 103, 109, 111, 115-118, 123,
 125-26, 128-34
Iron Regulatory Protein 1 (IRP1) 28
Iron Regulatory Protein 2 (IRP2) 28,
 114
Janus Kinase/Signal Transducer and
 Activator of Transcription (JAK/
 STAT-3) 52
Koilonychia 37, 70-71
Lactoferrin 22-23, 54, 73, 109-10,
 113-14, 128
Luminal 31
Macrophages 22, 27, 32-33, 35-37,
 51-54, 86, 100
Malabsorption 30, 42, 86, 100, 124
Mean Corpuscular Haemoglobin
 (MCH) 14
Mean Corpuscular Haemoglobin
 Concentration (MCHC) 14
Mean Corpuscular Volume (MCV)
 14, 86
Meckel’s diverticulum 40
miR-122 33, 111
mk mice 27, 45
morbidity 77-78, 97, 109-11, 113
mortality 20, 77-78, 97, 109-11, 113
Necator americanus 43-44, 109
Packed Cell Volume (PCV) 14, 116
pagophagia 73, 111, 125
parasitic infections 39, 43, 116
Parasitic infestation 43
Parenteral 71, 97, 100-1, 118
Perls’ stain 22, 36
pharyngeal webs 37
Phosphates 27, 102
Phytates 27, 31, 102
Pica 37, 43, 47, 50-51, 59, 67, 73, 117, 119
potassium ferrocyanide 26
pregnancy 13, 19-20, 30-31, 40-42, 63, 67, 69, 75-80, 87, 97, 100, 104, 109-110, 112-13, 115-31
Protoporphyrin 36, 64, 79, 131
Prussian blue 22, 26, 55
Pseudotumor cerebri 84
psychomotor 82, 130
pure red cell aplasia 85, 88, 105
Pyridoxine 47, 55-56, 58, 112, 115, 126, 128
Recombinant human erythropoietin (rhEPO) 101
Red cell Distribution Width (RDW) 14
Red cell protoporphyrin (EP) 36, 64
refractory anaemia with ring sideroblast (RARS) 55
Responsive Element (IRE) 28, 33
Reticuloendothelial 21, 100
ring sideroblast 55, 94, 112, 122
Romanowsky stains 36
Serum transferrin receptor (sTfR) vi
sickle cell 41, 47-48, 86, 88, 91-93
Sideroblastic anaemia 50, 54-56, 64, 86, 94, 100, 106, 109, 111-12, 120
siderotic granules 36-37, 55, 64-65
SLC25A38 mutation 55-56
small intestinal lactoferrin receptor (SI-LfR) 23
stroke 83, 110, 115, 118, 123, 127-28, 131
Tannates 27, 31, 102
TfR ferritin index 54
Thalassaemias 14, 80
TMPRSS6 mutation 46, 115
Total Iron Binding Capacity (TIBC) 15, 61-62, 86, 89
Transferrin 21-22, 25-27, 30, 32-33, 35-36, 63, 75, 78, 80, 89, 100, 113, 118, 124-25
transferrin receptors (TfRs) 22, 33, 63, 75
Trichuris trichiura 43
Tumour Necrosis Factor alpha (TNF- alpha) 52
Unsaturated iron binding capacity (UIBC) 61
Vellus 69
Vitamin A 103, 109-11, 116, 118, 121-30
Whipworm 43
Zinc Protoporphyrin (ZPP) 64
BIODATA

DR NOOR FADZILAH ZULKIFLI
MD(USM), MPath(Hemato)(UKM)

Presently she is a Senior Lecturer in Faculty of Medicine & Health Sciences of Universiti Sains Islam Malaysia (USIM). She is also the Head of Department for the Department of Basic Medical Sciences II. Previously she held the post of Clinical Pathologist in Hospital Kuala Lumpur. She is a lifetime member of Asia Pacific Society of Thrombosis and Haemostasis, Malaysian Society of Haematology and Malaysian Society of Blood Transfusion. She is the principal author of this book on Iron deficiency anemia. She had contributed a chapter in a book (Islam Dan Penjagaan Kesihatan: Gaya Hidup Sihat Dan Pencegahan Penyakit Secara Am) and has published 8 papers in peer-reviewed journals. She is currently engaged in a research project on Obesity and leukemia.

PROFESSOR DR METHIL KANNAN KUTTY
MBBS(Madras), MD(Lucknow), FRCPaPath(Lond.), FRCPA(Aust.)

Presently he is a Professor of Pathology in Faculty of Medicine of UiTM. He has held posts of Professor of Pathology in Universiti Sains Islam Malaysia, International Medical University, Royal College of Medicine, Perak and King Faisal University, Dammam, Kingdom of Saudi Arabia. He was the Foundation Professor of Pathology in UKM and a Visiting Professor to Madras University for five years. He was also a visiting lecturer for M.Path students in University of Malaya and postgraduate teacher for Pathology for F.R.C.S (Ireland) students in King Faisal University .Dammam Kingdom of Saudi Arabia.
He has been actively engaged in research both as a research worker and supervisor for post-graduate students (MSc and PhD). He is the recipient of Sir David Galloway Memorial Award from Singapore Academy of Medicine for his work on Rhinosporidiosis. Currently, he also teaches post-graduate students in Surgical Sciences in UKM. He was an examiner for Primary FRCS of the Royal College of Surgeons, Ireland and FRCPA of Royal Australasian College of pathologists. He is an examiner for post graduate. He was a research collaborator with Professor Warwick Armstrong of California University on Nasopharyngeal carcinoma. He has more than 120 research publications in local and international peer reviewed journals. He is the principal author of a book on Dysfunctional Uterine Bleeding with Professors Dr Sivaachanna and Professor Dato' Dr. Nik Nasri as co-authors. He has also co-authored with Dr. Noor Fadzilah Zulkifli for this book on Iron Deficiency Anemia.
IRON DEFICIENCY ANAEMIA: CURRENT CONCEPTS

This book was written with the aim of presenting the subject of iron deficiency anemia oriented primarily towards the academic needs of students of medicine and trainees; it provides an easy access to current knowledge of the subject. This book attempted to cover comprehensively many facets including the epidemiology, normal iron homeostasis in human body, aetiology, pathology, differential diagnosis, and diagnostic investigations; in addition management, prevention and clinical approach to a patient with suspected iron deficiency anaemia have also been alluded to. Hopefully this book will serve useful for all interested in iron deficiency anemia including researchers.

“This book is an extensive compilation of the author on iron deficiency anaemia. Iron deficiency anaemia is a very common haematological disorder and has been a public health problem in this region. It gives an invaluable understanding about the disease and it is a useful reference for researchers, graduates and public. I wish to recommend it to all who are interested in this area.”

Assoc. Professor Dr. Rosline Hassan, Head, Department of Haematology, School of Medical Sciences, USM

“The contents of this book have been outlined under clear and distinct headings and the matter has been presented in a lucid and easily understandable manner suitable for local environment. Although the disease is an old entity, the authors have searched through the recent developments including Molecular Biology to unravel the mystery of the mechanism. Several line diagrams and tables incorporated in the manuscript are appropriate and helpful in better understanding. The colour plates of blood films are of good quality and appropriate. The reference is extensive and the indexing is easier.

I am certain that the book will be popular and beneficial for the undergraduate and post graduate students in Pathology and Medicine. The Clinicians will find it an easy readable reference”.

Dr. Prashanta Kumar Das (M.D., FRCPath), Consultant Pathologist, Hospital Lam Wah Ee, Penang (Formerly Professor of Pathology in School of Medical Sciences, USM)